What is this course about?
This course is designed to meet the needs of students, especially those enrolled in a business program, who require a working knowledge of elementary mathematical concepts. Topics include simple linear, quadratic and exponential models, inequalities, the mathematics of finance and an introduction to the calculus of single-variable functions with emphasis on applications to marginal analysis and optimisation. NOTE: This same course previously used the code: STAT11028. Students MUST NOT attempt both courses.

Course learning outcomes
On successful completion of this course, you should be able to:

1. have established a foundation in mathematics with emphasis on those areas applicable to management
2. have gained knowledge of those concepts in mathematics which are fundamental to the formulation and analysis of simple mathematical models
3. have gained the ability to apply theory to practical problems drawn from a range of disciplines
4. be prepared in the mathematics background necessary for the understanding of other courses in the Faculty of Business and Informatics degree programs.

When is it offered?
2008 Term Two
For those of you taking the course on campus, the schedule will be published at http://timetabling.cqu.edu.au

Where is it offered?
Brisbane, Bundaberg, Flexible Learning, Gold Coast, Mackay, Melbourne, New Zealand, Rockhampton, Sydney

How is it assessed?
Approved assessment for this course is:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>60%</td>
</tr>
<tr>
<td>Other</td>
<td>40%</td>
</tr>
</tbody>
</table>

What textbooks do I need to obtain?
Prescribed

Optional/Supplementary
Information for Students for this Offering

Study Schedule

<table>
<thead>
<tr>
<th>Week Begin Date</th>
<th>Module/Topic</th>
<th>Chapter</th>
<th>Events and submissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>--------------------</td>
<td>---------------------------------------</td>
</tr>
</tbody>
</table>

Assessment item 1
All Students
Assignment 1
Due: 08 Aug 08
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Study Guide:</td>
<td>Check for Course Updates:</td>
<td>Check your CQU Email:</td>
<td>Relevant Textbook Problems (choose from):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Textbook: Section 5.5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture Slides: Week 10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Workshop Exercises: Week 10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Textbook: Sections 11.2, 11.3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture Slides: Week 11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Workshop Exercises: Week 11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worked Examples: Example 11-4, Example 11-8, Example 11-10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture Slides: Week 12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Workshop Exercises: Week 12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other important dates

Program Review: 6 – 8 October 2008
Examinations: 9 – 24 October 2008

Note: A recess is held during term. Please consult the CQU Handbook for specific dates and other information at:

http://handbook.cqu.edu.au

Contacting teaching staff

During the course students should initially contact their local teaching staff to answer any queries related to the course that they may have. Contact details for local teaching staff can be found on the course website. If local teaching staff cannot fully answer the query or it is of a personal nature, students can contact the Course Coordinator.

Other information for both on-campus and off-campus students will be provided on the web, before term starts, at:

If you are unable to access the web for this information please telephone the relevant School Administrative Officer on (07) 4150-7089 or (07) 4930-9872 and a copy will be provided.

Course presentation

Web mail

The university allocates every student an individual email address, the format of which is studentnumber@student.cqu.edu.au (e.g. S00011123@student.cqu.edu.au). This is the official email address that the university will use for all email correspondence. Student emails can be accessed through http://webmail.cqu.edu.au or http://mycqu.cqu.edu.au. Students are expected to check their official email address on a frequent and consistent basis (at least once weekly). Students are encouraged to review the new university policy relating to email communication at http://policy.cqu.edu.au/Policy/policy.jsp?policyid=642 which has been introduced to ensure all course and program updates are received.

Course mailing list

It is recommended that students use the course mailing list. ALL enrolled students will be automatically subscribed to the course list using their official university email address (i.e. studentnumber@student.cqu.edu.au). List membership subscriptions are refreshed daily. It is not recommended that students subscribe to the course mailing list using an alternative email address. If so, these will only be effective until the next daily refresh process. This reflects the new CQU Student Email Policy.
All students
The presentation for all students, in addition to this Course Profile, comprises:

- Study Guide
- Student use of the course website is required—this is provided using the Learning Management System which can be accessed through the MyCQU Student Portal: http://mycqu.cqu.edu.au/portal/dt. If you have difficulty logging in, please contact Helpdesk on (07) 4930 9233.
- Regular student access to email is required for this course
- Regular student access to the Internet is required for this course.

Students are expected to follow a self-directed study schedule which meets the required deadlines.

Course website

The website for this course is located at:

If you have any problems related to this course please contact your campus Lecturer or Tutor for on-campus students, or the Course Coordinator via e-mail for off-campus students as soon as possible so your study progress is not affected.

Required resources

Guide for students

Study guide
- CQU 2008, Quantitative methods A: study guide, CQU DTLS.

It is required that all students make use of the MATH11246 Study Guide. The Study Guide consists of 13 modules each representing one week’s work plus exam revision. Each module contains study objectives, explanations and discussion of the topics, worked examples, and recommended textbook readings.

Scientific calculator

A scientific calculator which includes radicals, powers, the log and ln functions, mean and standard deviation of grouped data, factorial (or combination and permutation), and memory keys will be required for this course.

Optional resources
Purchase of additional resources is not compulsory.
Recommended references

This may be useful for those having difficulties with the underlying mathematics.

CD resources

Ashton Education has produced two CD packs which are designed to help students with the content of Quantitative Methods A. They include video explanation, randomly generated questions and step by step solutions for many of the topics in the course. This resource is particularly useful for flexible students who are unable to attend classes and so cannot otherwise hear the course content explained. The CDs are available for purchase by contacting Ashton Eibeck at www.maths-academy.com or on (07) 4986 1138.

Assessment

Continuous assessment / examination

To obtain a grade of Pass or higher in this course a student must:

- score at least 50% of the marks available in the Examination; AND
- score at least 50% Overall.

Week 0: self-test on the web

A diagnostic test will be available on the course website for you to use in your own time, preferably at the start of the course. This is for your own use and is not assessable. Instructions for the test will be placed on the course website. It is not timed.

The 30 question multiple-choice diagnostic test is designed to enable you to make your own assessment of your mathematical knowledge level. The questions in the test are based on modules taken from Transition Mathematics 1 (TM1), the bridging mathematics in the STEPs program. We have drawn from modules that are appropriate to MATH11246. If you find that you perform poorly in this test, it is strongly recommended that you undertake the TM1 bridging mathematics program before undertaking MATH11246. Please contact the Mathematics Learning Centre for more details.

Assignment details for all students

It is strongly recommended that students submit both assignments in order to increase their chance of receiving a passing grade in this course.

Assignments are available online to CQU staff and students only.

Each assignment is worth 20% of the total assessment for this course. Each question on an assignment is worth 1 mark. Complete workings must be submitted or the assignment will not be marked. There are no marks for workings. Workings will be used to verify individual work and resolve any issues of plagiarism. Comments or suggestions may be made at the discretion of the assignment markers. As there are 40 questions per assignment, the total score out of 40 for each assignment is divided by 2 to determine the final assignment mark.
Marks will be deducted for assignments which are submitted late without prior permission or adequate explanation. Assignments will receive NO marks if submitted after the solutions are released (2 weeks after the assignment submission date).

In each assignment, there is a mixture of question types. Follow the directions on the assignment question sheet. Submit your worked solutions, the completed answer sheet, and a signed assignment cover sheet. Keep a copy for yourself. Solution outlines will be returned with the assignment.

Assignment submission

Off-campus students are to submit the assignments using the Division of Teaching and Learning Services (DTLS) assignment submission system. This means using the yellow folders and barcode stickers included with your enrolment package. **They must be hard copies and cannot be submitted electronically through email.** To count as being submitted on time, your workings must be posted by the due date.

On-campus students are to submit the assignments to their local lecturer or tutor.

Applying for an extension

Students should refer to the Faculty of Business and Informatics website (http://webfuse.cqu.edu.au/Help/Students/Viewlet_Farm/AES.htm) for the correct process for applying for an extension. No extension will be given for more than two weeks after the due date.

Policies and procedures for assessment

Students must familiarise themselves with the following policies and procedures:

<table>
<thead>
<tr>
<th>Policy Area</th>
<th>Resource Details</th>
</tr>
</thead>
</table>
Assessment details for ALL students

Assessment item 1—Assignment 1

Due date: End of Week 5 (Friday 8 August 2008)
Weighting: 20%

This assessment item is for MATH11246 for Term 2, 2008

Objectives
This assessment item relates to all course learning outcomes.

Details
1. Answer sheet:
 - Write only your answers on the answer sheet provided.
 - For multiple choice answers, write only the letter of the correct answer.

2. Completed working:
 - All answers require a clearly communicated mathematical justification in addition to the answer sheet in order to receive marks.
 - For each question, provide complete step by step workings that clearly show the means by which the solutions were obtained.
 - Trial and error will not be accepted as a justification. However, it is a good idea to check your answers where you are able.
 - Staple this work to the back of the answer sheet, ensuring that the questions are clearly numbered.
 - Submit these workings via either DTLS or your local lecturer or tutor. They must be hard copies and cannot be submitted electronically through email.

3. All work should be neatly handwritten or typed (if an equation editor is available).

4. Keep a copy of your submission.

Please note that the questions in the assignment are based on the weekly work in the course.

- Week 1: Questions 1-10
- Week 2: Questions 11-20
- Week 3: Questions 21-30
- Week 4: Questions 31-40
Question 1
Given the numbers 4, -7, $\frac{3}{4}$, π, 0, -0.2 list those that are integers.

Question 2
True or False: 6 is a rational number

Question 3
Simplify: $\frac{3}{10} + \frac{4}{15}$

Question 4
Simplify: $-6 - 2$

Question 5
Simplify: $(-3)(6)$

Question 6
$-2 + (-7) =$
A) 14 B) -5 C) 9 D) 5 E) -9

Question 7
Find the value and simplify: $\left(\frac{36}{4}\right)^{\frac{1}{2}}$

Question 8
Find the value and simplify: $9^{\frac{1}{2}}$

Question 9
Find the value and simplify: $\left(3^{4}\right)^{\frac{1}{2}}$

Question 10
Find the value and simplify: $\left(\frac{1}{27}\right)^{\frac{1}{3}}$

Question 11
Simplify: $\frac{x + 1}{\frac{2}{1}}$
Question 12
Simplify: \(-2(3 - 6x)\)

Question 13
Simplify and express your answer in terms of positive exponents: \(\left(\frac{x^{-1}}{y^{-1}}\right)^{-2}\)

Question 14
\[
\left(\frac{2x^3}{y^2}\right)^4 = \]
A) \(\frac{2x^7}{y^8}\) B) \(\frac{16x^{12}}{y^3}\) C) \(\frac{16x^{12}}{y^8}\) D) \(\frac{2x^{12}}{y^8}\) E) \(\frac{16x^7}{y^6}\)

Question 15
Simplify: \(\left(7a^3 \times b^2\right)^5 \left(3 \times ab^3 c^2\right)^4\)

Question 16
\((x - 4)^2 = \)
A) \(x^2 + 8x + 16\) B) \(x^2 - 16\) C) \(x^2 - 8x + 16\) D) \(x^2 + 4x - 16\) E) \(x^2 - 4x + 16\)

Question 17
Simplify: \(-[(6 + 2x) - 4(x - 2)]\)

Question 18
Subtract the algebraic expressions:
\[
\left[\left(\frac{5}{7}\right)a^3bc - \left(\frac{3}{7}\right)ab^2 + \left(\frac{8}{5}\right)a^2b + \left(\frac{11}{5}\right)a - b\right] - \left[\left(\frac{3}{7}\right)ab^2 - \left(\frac{5}{7}\right)a^3bc + \left(\frac{5}{7}\right)a^2b - \left(\frac{11}{5}\right)b - \left(\frac{1}{5}\right)a\right]
\]

Question 19
Perform the operation and simplify your answer: \(\frac{2}{x} - \frac{x}{2}\)

Question 20
\[
\frac{3x + 4}{12} - \frac{2x - 3}{9} = \]
A) \(\frac{x + 24}{36}\) B) \(\frac{x - 24}{36}\) C) \(\frac{24x + 1}{36}\) D) \(\frac{24 - x}{36}\) E) \(\frac{36x + 24}{36x}\)
Question 21
Solve: \(\frac{6y}{7} = -\frac{3}{5} \)

Question 22
Solve for \(x \): \(a(2 - x) = 3b \)

Question 23
Find \(s \) explicitly in terms of the other unknowns: \(pq = \frac{s(3t + 2)}{3t^2 + 2p - q} \)

Question 24
Aaron and Jessica want to buy a house, so they have decided to save one fifth of each of their salaries. Aaron earns $15.00 per hour and receives an extra $5.00 a week because he declined the company gym membership. Jessica earns $14.00 per hour since she has taken the gym membership. They work the same number of hours and want to save at least $175.00 each week. How many hours must each work each week?

Question 25
Solve: \(\sqrt{4x^2 + 5} - 1 = 2(x + 2) \)

Question 26
Solve: \(x(4 - 2x) = 16 \)

Question 27
Use the quadratic formula to solve the following equation: \(x^2 - 6x + 9 = 0 \)

Question 28
Use the quadratic formula to solve the following equation: \(2x^2 + x - 4 = 0 \) Round your answer to 3 decimal places.

Question 29
A number squared is thirty-five more than twice the number. What is the number?

Question 30
Suppose the weekly revenue \(R \) for a company is given by \(R = -3p^2 + 60p \) where \(p \) is the price of their service in dollars. What is the price of their service if the revenue is $400?

Question 31
A certain machine can perform 34 chemical analyses per day, but a lab technician can perform only 7. Suppose a laboratory must make 110 analyses tomorrow and it has only two machines. How many technicians will be needed to complete the job?
Question 32
A company manufactures hair dryers. The manufacturing cost is $9 per unit with a fixed cost of $16,000. A hair dryer sells for $15. If the company wants to earn a profit of $50,000, how many hair dryers must be produced and sold?

Question 33
Solve: \(2(x - 8) + 5 \leq 4 \left(2 - \frac{x}{2}\right)\)

Question 34
The solution of \(\frac{4x + 2}{5} < \frac{1 - 3x}{2}\) is
A) \(x < -\frac{1}{23}\)
B) \(x > \frac{1}{23}\)
C) \(x < \frac{1}{23}\)
D) \(x > -\frac{1}{23}\)
E) \(x < \frac{4}{9}\)

Question 35
Solve: \(3(x - 5) + 7 < 4(3 - x) + 7x - 20\)

Question 36
What Celsius temperature \(C\) corresponds to a Fahrenheit temperature of \(F = 77\) degrees if \(F = \frac{9}{5}C + 32\)?

Question 37
A company manufactures water filters that cost $15 for labour and materials plus $50,000 in fixed costs. If they sell the water filter for $20, how many must be produced and sold to begin making a profit?

Question 38
The owners of a bakery need to borrow money to purchase a new oven. The bakery has current liabilities of $15,000 and current assets of $52,000. How much can they borrow if they want their current ratio of assets to liabilities to be no less than 2.6? (Note: The funds they receive are considered as current assets and the loan as a current liability.)

Question 39
The cost of producing each copy of a travel guide is $0.95. It is sold to travel agents for $0.90 each, and the amount received for advertising is 10% of the amount received for all guides sold beyond 12,000. Find the fewest number of travel guides that must be produced and sold to break even.

Question 40
Solve: \(\left|\frac{-x}{3}\right| < 2\)
Assignment 1 must be submitted using this answer sheet. Complete workings (on separate sheets) must be stapled to the back of this answer sheet.
Assessment item 2—Assignment 2

Due date: End of Week 9 (Friday 12 September 2008)
Weighting: 20%

This assessment item is for MATH11246 for Term 2, 2008

Objectives
This assessment item relates to all course learning outcomes.

Details
1. Answer sheet:
 - Write only your answers on the answer sheet provided.
 - For multiple choice answers, write only the letter of the correct answer.
2. Completed working:
 - All answers require a clearly communicated mathematical justification in addition to the answer sheet in order to receive marks.
 - For each question, provide complete step by step workings that clearly show the means by which the solutions were obtained.
 - Trial and error will not be accepted as a justification. However, it is a good idea to check your answers where you are able.
 - Staple this work to the back of the answer sheet, ensuring that the questions are clearly numbered.
 - Submit these workings via either DTLS or your local lecturer or tutor. They must be hard copies and cannot be submitted electronically through email.
3. All work should be neatly handwritten or typed (if an equation editor is available).
4. Keep a copy of your submission.

Please note that the questions in the assignment are based on the weekly work in the course.
 - Week 5: Questions 1-10
 - Week 6: Questions 11-20
 - Week 7: Questions 21-30
 - Week 8: Questions 31-40
Question 1
For the graph of $y = x^2 - 3x - 10$, a) determine the x-intercept(s), and b) determine the y-intercept.

Question 2
Bill has charged $2300 on his charge card. He plans to pay $60 a month on his charge cards. a) Write an equation to represent the amount he owes excluding any finance charges. b) Identify the x-intercept for the equation found in part a. c) Identify the y-intercept for the equation found in part a.

Question 3
The y-intercept of the line determined by the points (-1, -4) and (-2, 5) is
A) $(0, -7)$ B) $(0, 7)$ C) $(0, 13)$ D) $(0, -13)$ E) $(0, -15)$

Question 4
The slope of the line passing through the points (-4, 5) and (3, -2) is
A) -1 B) 1 C) -7 D) -3 E) 3

Question 5
The slope of the line $4x - 8y + 3 = 0$ is
A) 2 B) $rac{1}{2}$ C) -2 D) 4 E) $-\frac{1}{2}$

Question 6
Suppose $f(3) = 8$, $f(0) = 4$, and f is a linear function. Find $f(12)$.
A) 20 B) 6 C) 24 D) -3 E) 13

Question 7
Suppose f is a linear function with slope -3 and $f(2) = 5$. Find $f(x)$.
A) $f(x) = -3x + 7$ B) $f(x) = -3x + 11$ C) $f(x) = -3x + 13$
D) $f(x) = -3x + 2$ E) $f(x) = -3x + 5$

Question 8
In testing an experimental diet for sheep, it was determined that the (average) live weight w (in kilograms) of a sheep was statistically a linear function of the number of days d after the diet was started, where $0 \leq d \leq 150$. The live weight of a sheep starting the diet was 15 kg and 40 days later it was 43 kg. a) Determine w as a linear function of d. b) Find the average live weight of a sheep when $d = 100$.

Question 9
When the temperature T (in degrees Celsius) of a certain laboratory animal is reduced, its heart rate r (in beats per minute) decreases. At a temperature of 37° C, the animal had a heart rate of 200, and at a temperature of 32° C its heart rate was 140. If r is a linear function of T for $26 \leq T \leq 38$,
a) determine this function; and b) determine the heart rate at a temperature of 30° C.
Question 10
Suppose \(f(1) = -5 \) and \(f(-2) = 4 \). Find \(f(x) \) if \(f \) is a linear function.

A) \(f(x) = \frac{x}{3} + \frac{2}{3} \)
B) \(f(x) = \frac{x}{3} - \frac{16}{3} \)
C) \(f(x) = -3x - 2 \)

D) \(f(x) = -3x + 5 \)
E) \(f(x) = \frac{x}{3} + \frac{14}{3} \)

Question 11
The population \(P \) of a city is given by \(P = 10,000(1.04)^t \) where \(t \) is the number of years after 1991. Find the population in (a) 1991, (b) 1993, and (c) 1998.

Question 12
If $10,000 is invested at 16% compounded quarterly, then the compound amount at the end of six years is

A) $26,678.42
B) $25,633.04
C) $26,987.33
D) $21,173.75
E) $24,278.09

Question 13
A trust fund is being set up by a single payment so that at the end of 30 years there will be $20,000 in the fund. If the interest rate is 8% compounded quarterly, how much money should be paid initially into the trust fund?

Question 14
Suppose $2000 is invested at 6.5% compounded annually. (a) Find the value of the investment after 5 years, and (b) find the value of the interest which was earned over the first 5 years.

Question 15
Suppose $2000 is invested at 6.5% compounded monthly. (a) Find the value of the investment after 5 years, and (b) find the value of the interest which was earned over the first 5 years.

Question 16
Evaluate and simplify: \(\log_3 \frac{1}{81} \)

Question 17
Find \(x \): \(\log x = -2 \)

Question 18
Use the definition of logarithms to rearrange and solve the following equation: \(\log_2 (x + 4) = 3 \)

Question 19
Find \(x \): \(\log_5 5^x = x \)

Question 20
Find \(x \): \(\log_3 1 = x \).

A) \(-1\)
B) \(0\)
C) \(1\)
D) \(3\)
E) no solution
Question 21
Find x: $\log x = 0$

Question 22
Writing \(\frac{1}{6} \ln x - 2(\ln y + 2 \ln z) \) as a single logarithm gives

A) \(\ln \sqrt[6]{\frac{xz^4}{y^2}} \)
B) \(\ln \sqrt[6]{\frac{x}{y^2z^2}} \)
C) \(\ln \frac{\sqrt[6]{x}}{y^2z^4} \)
D) \(\ln \sqrt[6]{\frac{x}{y^2z^4}} \)
E) \(\ln \frac{\sqrt[6]{x}}{yz^2} \)

Question 23
Assume that $\log 4 = 0.6021$. Determine the value of $\log \frac{1}{16}$.

Question 24
Solve for x: $e^{2 \ln (2x)} = 4$

Question 25
\[
\ln \frac{x}{\sqrt{yz}} =
\]

A) \(\frac{\ln x}{\sqrt{\ln y \ln z}} \)
B) \(\ln x - \sqrt{\ln y \ln z} \)
C) \(\ln x - \frac{1}{2} (\ln y - \ln z) \)
D) \(\ln x + \frac{1}{2} (\ln y - \ln z) \)
E) \(\ln x - \frac{1}{2} (\ln y + \ln z) \)

Question 26
If $\ln x + \ln 2 = \ln 5$, then $x =$

A) \(\frac{5}{2} \)
B) \(\frac{2}{5} \)
C) \(\sqrt{5} \)
D) \(\frac{1}{3} \)
E) \(3 \)

Question 27
Solve for t: $300 = 500(1 - e^{0.2t})$. Assume that $\ln(0.4) = 0.9$.

Question 28
Solve for x: $\log(x + 1) - \log(x - 2) = 1$

Question 29
Solve for x: $\log_3(x + 7) - 3 \log_2 = \log x$

Question 30
The demand equation for a product is given by $q = 1000 - 3^p$. Solve for p and express your answer in terms of common logarithms.
Question 31
Over a period of 3 years, an original principal of $1000 accumulated to $1200 in an account where the interest rate was compounded monthly. Determine the rate of interest to two decimal places.

Question 32
At what nominal rate of interest, compounded semiannually, will an investment double in 20 years?

Question 33
Suppose an initial investment grows from $330 to $600 over five years. a) Find the nominal rate compounded monthly. b) What is the equivalent effective rate?

Question 34
An initial investment of $10,000 grows at an annual rate of 3.5% compounded monthly. Find how long it takes for the investment to amount to $14,400.

Question 35
A debt of $600 due 3 years from now and $800 due 5 years from now, is instead to be paid off by two payments: $500 now and a final payment at the end of 6 years. What would this payment be if an interest rate of 6% compounded quarterly is assumed?

Question 36
Find the present value of $5000 due in 3 years if the interest rate is $\frac{3}{4}$% compounded monthly.

Question 37
A trust fund for a newborn is being set up by a single payment so that at the end of 18 years there will be $34,000. If the fund earns interest at the rate of 6.25% compounded monthly, how much money should be paid into the fund initially?

Question 38
Suppose Sarah owes Luke three sums of money: $1000 due in 2 years, $1500 due in 5 years, and $2000 due in 8 years. Suppose she would rather pay him $2000 now and the rest in 3 years. If the interest rate is 6% compounded annually, how much will she owe in 3 years?

Question 39
Joshua has the opportunity to invest $3000 in a friend's business such that he will be repaid $4500 in six years. On the other hand, he can invest the $3000 in a savings account that pays 5.5% compounded quarterly. At the end of six years, which investment would be better?

Question 40
Suppose that Tammie can invest $13,000 in a business that guarantees her the following cash flows: $6000 at the end of 2 years, $5000 at the end of 4 years, and $4000 at the end of 6 years. Assume an interest rate of 6% compounded monthly. (a) Find the net present value of the cash flows. (b) In one sentence state whether the investment is profitable and why.
Assignment 2 must be submitted using this answer sheet. Complete workings (on separate sheets) must be stapled to the back of this answer sheet.

Q1 a) b)

Q11 a) b) c)

Q3

Q4

Q5

Q6

Q7

Q8 a) b)

Q9 a) b)

Q10

Q11 a) b) c)

Q12

Q13

Q14 a) b)

Q15 a) b)

Q16

Q17

Q18

Q19
Examination

Due date: During examination period at end of term
Weighting: 60%
Length: Duration 3 hours

Examination conditions

- The exam is open book—ANY materials are allowed, including annotated notes in textbooks; any edition of the textbook is permitted.
- All non-communicable calculators, including scientific, programmable and graphics calculators are permitted.
- A non-electronic, concise, direct translation only (dictionary must not contain any notes or comments) dictionary is permitted.
- All questions on the final exam are compulsory.
- Please go to the course website for further information and sample exam.

View the University’s policy on examination in the Assessment of Coursework Policy at:
http://policy.cqu.edu.au

View important examination information at:

The examination timetables will be made available later in the term. View the examination timetable at:

Further information on the examination will be available on your course website later in the term and within your revision lecture.

Students should also note that if Supplementary Assessment is granted, this will in many cases take the form of a Supplementary Examination as is required for professional body accreditations.

NOTE: The examination information provided in this Course Profile also relates to Deferred Exams. No separate advice will be provided in the case of a deferred exam.