The user's way to interact with the computer system is very important. Its characteristics not only determine the 'friendliness' of the system but can influence a person's decision to use the system. Experience has shown that if a system is hard to use, the dialogue, individuals will tend to avoid the system, and its use could be more effective by using it.

Charts
Charts may depict the activities in an information system in the form of graphic illustrations. Dialogue charts, as they are called, show the possible sequences of activities a system can perform and how to invoke these activities. They also illustrate how the user can exit (i.e., terminate) a sequence of actions.

Reading 3-1


Pages copied: 465–466
DESIGNING DIALOGUE

A dialogue is the user's way to interact with the computer system and application. Its characteristics not only determine the "friendliness" of the system but also influence a person's decision to use the system at all. Experience has shown that if a system is hard to use because of the dialogue, individuals will tend to avoid the system, even if they could be more productive or effective by using it.

Dialogue Charts

Analysts often depict the activities in an information system in the form of simple graphic illustrations. Dialogue charts, as they are called, show what sequence of activities a system can perform and how to initiate the actions. They also illustrate how the user can exit (i.e., interrupt) an activity. In a sense, you might say the dialogue chart is a road map through the system.

Figure 10.1 illustrates a portion of a dialogue chart for an inventory management system. We see, for instance, that from the main menu five processing alternatives can be invoked: adjusting inventory, entering item information, entering vendor information, selecting reports, and maintaining the system.

By convention, the processing functions are shown in rectangles that include the name of the function. Each function is linked to higher- or lower-level functions by an arrow labeled with the name of the alternative selected at the next higher level to invoke the function. For example, from the main system level, the processing to adjust inventory is alternative 1, entering item information is alternative 2, etc. (The analyst must decide how the user will actually select these alternatives, options for which are discussed in the next section of the chapter.)

Shortcuts are often desirable because they enable a user to move quickly from one level to another or to interrupt processing that has begun. Escapes, as the shortcuts are known, are planned by the analyst in conjunction with dialogue design. The dialogue chart shows the escape in the lower left-hand corner of the process rectangle. For example, as Figure 10.1 shows, to escape from the adjust inventory menu to the main application menu, the user can depress the escape key on the workstation keyboard.

Since the dialogue chart will be used throughout the system design, it is useful to include a reference to the actual display layout form in the documentation for the system. The lower right-hand corner of each symbol lists the layout overlay number. Overlay 22 corresponds to the adjust inventory function, as shown in Figure 10.1.

Systems analysts often build in user-assistance features in the form of "help screens," which are discussed in more detail elsewhere in the chapter. In general, help screens stay behind the scenes until they are needed, at which time they can be invoked by the user. When invoked, they use all or part of the display screen to provide information about how to use a certain function or initiate a particular action. When planning online dialogue that includes help functions, analysts show these functions residing in the background by drawing the help screen behind the primary screen. Figure 10.1 shows the background help function at the main system level.
FIGURE 10.1
Dialogue chart for inventory management system.