Test 2 Solutions

1. Using first the identity \(\sin(A + B) = \cos A \sin B + \sin A \cos B \) with \(A = 2\theta \) and \(B = \pi/2 \) gives

\[
\sin(2\theta + \pi/2) = \cos 2\theta \sin \pi/2 + \sin 2\theta \cos \pi/2 = \cos 2\theta
\]

(where we have used \(\cos \pi/2 = 0 \) and \(\sin \pi/2 = 1 \)). Next the identity \(\cos 2A = \cos^2 A - \sin^2 A \) with \(A = \theta \) gives

\[
\sin(2\theta + \pi/2) = \cos 2\theta = \cos^2 \theta - \sin^2 \theta.
\]

2. Substituting \(\cos^2 x = 1 - \sin^2 x \) we have

\[
2 \cos^2 x - \sin x = 2(1 - \sin^2 x) - \sin x = -2\sin^2 x - \sin x + 2 = 1
\]

or \(-2\sin^2 x - \sin x + 1 = (\sin x + 1)(-2 \sin x + 1) = 0 \). Thus \(\sin x = -1 \) or \(\sin x = \frac{1}{2} \). For \(0 \leq x \leq 360^\circ \) \(\sin x = -1 \) gives \(x = 270^\circ \) while \(\sin x = \frac{1}{2} \) gives \(x = 30^\circ \) and \(x = 150^\circ \). The required solutions are thus \(x = 30^\circ \), \(x = 150^\circ \) and \(x = 270^\circ \).

3. We write

\[
4 \cos 2t + 3 \sin 2t = A \sin(2t - \phi)
\]

\[
= A(\sin 2t \cos \phi - \cos 2t \sin \phi)
\]

\[
= A \sin 2t \cos \phi - A \cos 2t \sin \phi.
\]

Comparing coefficients of \(\cos 2t \) we have \(A \sin \phi = -4 \) and of \(\sin 2t \) we have \(A \cos \phi = 3 \). Squaring and adding gives \(A^2 = 25 \) and so we take \(A = 5 \). Dividing these two equations we have \(\tan \phi = -\frac{4}{3} \) or \(\phi = -\tan^{-1}\frac{4}{3} = -0.9273 \). We note that \(\sin \phi \) is negative while \(\cos \phi \) is positive so that \(\phi \) lies in the fourth quadrant so that the value \(\phi = -0.9273 \) is correct. The required expression is thus \(5 \sin(2t + 0.9273) \).

4. We here have simply \(\sin A = \frac{7}{12} \) so that \(A = \sin^{-1} \frac{7}{12} = 35.68^\circ \) or 0.6228 radians.

5. We first note that \(B = 180 - A - C = 180 - 45 - 55 = 80^\circ \). Next the sine rule gives
\[
b = \frac{\sin B}{\sin A} = \frac{4 \sin 80^\circ}{\sin 45^\circ} = 5.571
\]

and

\[
c = \frac{\sin C}{\sin A} = \frac{4 \sin 55^\circ}{\sin 45^\circ} = 4.634.
\]

6. On the first bearing the yacht travels \(30 \sin 60^\circ = 25.98\) nautical miles east and \(30 \cos 60^\circ = 15\) nautical miles north. On the second bearing the yacht travels \(48 \sin 60^\circ = 41.57\) nautical miles east and \(48 \cos 60^\circ = 24\) nautical miles south. The combined distance travelled is then \(25.98 + 41.57 = 67.55\) miles east and \(24 - 15 = 9\) miles south from the starting point.

We next calculate the bearing as \(-\tan^{-1} \frac{07.55}{9} = -82.41^\circ\) and the distance back to the starting point is 68.15 miles. Thus it will take 9.735 hours or 9 hours 44 minutes to return to the starting point at seven knots.

7. (i) \(3\mathbf{a} + \mathbf{b} = 3(2, -1, 1) + (1, 2, 3) = (6, -3, 3) + (1, 2, 3) = (7, -1, 6)\).

(ii) Now \(\mathbf{a} - \mathbf{b} = (1, -3, -2)\) so that \(|\mathbf{a} - \mathbf{b}| = \sqrt{1 + 9 + 4} = \sqrt{14}\).

(iii) First \(|\mathbf{b}| = \sqrt{14}\) so that \(\hat{\mathbf{b}} = \frac{1}{\sqrt{14}}(1, 2, 3)\).

8. We have for the dot product \(\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta\) where \(\theta\) is the angle between \(\mathbf{a}\) and \(\mathbf{b}\). We therefore have

\[
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{-6}{5\sqrt{5}} = -0.5367.
\]

This gives \(\theta = -57.54^\circ\) or \(-1.0043\) radians. More appropriately we have \(\theta = 122.46^\circ\) or 2.1373 radians.
9. In the usual way we calculate $\mathbf{g} \times \mathbf{h}$ from the array

\[
\begin{array}{ccc}
i & j & k \\
2 & 1 & 0 \\
-1 & 0 & 3
\end{array}
\begin{array}{ccc}
i & j & k \\
2 & 1 & 0 \\
-1 & 0 & 3
\end{array}
\]

and obtain $\mathbf{g} \times \mathbf{h} = 3\mathbf{i} - 6\mathbf{j} + \mathbf{k}$.

To show that $\mathbf{g} \times \mathbf{h}$ is perpendicular to both \mathbf{g} and \mathbf{h} we merely have to show that $(\mathbf{g} \times \mathbf{h}) \cdot \mathbf{g}$ and $(\mathbf{g} \times \mathbf{h}) \cdot \mathbf{h}$ are each zero. This is easily done:

\[
(\mathbf{g} \times \mathbf{h}) \cdot \mathbf{g} = (3, -6, 1) \cdot (2, 1, 0) = 0
\]

\[
(\mathbf{g} \times \mathbf{h}) \cdot \mathbf{h} = (3, -6, 1) \cdot (-1, 0, 3) = 0.
\]

10. The equation of the plane passing through the point A with position vector \mathbf{a} and having normal \mathbf{n} is $(\mathbf{r} - \mathbf{a}) \cdot \mathbf{n} = 0$ or $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$. With $\mathbf{a} = (1, 2, -1)$ and $\mathbf{n} = (2, 3, -1)$ we have

\[
\mathbf{r} \cdot (2, 3, -1) = (1, 2, -1) \cdot (2, 3, -1) = 9
\]

or with $\mathbf{r} = (x, y, z)$ we have the equation in cartesian form as $2x + 3y - z = 9$.

Considering the point with position vector $(2, 1, 0)$, that is the point $x = 2$, $y = 1$, $z = 0$, we have $2x + 3y - z = 7 \neq 3$ so that the point does not lie on the plane.